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Breakdown of self-organized criticality in sandpiles
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We introduce two sandpile models which show the same behavior of real sandpiles, that is, an almost
self-organized critical behavior for small systems and a dominance of large avalanches as the system size
increases. The systems become fully self-organized critical, with the critical exponents of the Bak, Tank, and
Wiesenfeld mode[P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. L&8, 381 (1987] as the system
parameters are changed, showing that they can make a bridge between the well known theoretical and numeri-
cal results and what is observed in real experiments.

DOI: 10.1103/PhysReVvE.66.051306 PACS nun)erd5.70.Ht, 05.65tb, 91.45.Dh

The concept of self-organized criticali€@OQC was intro-  that seem to display a power-law distribution of limited size.
duced by Bak, Tang, and WiesenfdBTW) in 1987 to de- These small avalanches are interwoven with big system-wide
note a phenomenon in which out of equilibrium, multidimen- avalanches which belong to a different distribution. There are
sional systems drive themselves to a critical stateStudies of avalanches in natural settirld®], which also
characterized by a power-law distribution of event sizds show similar distribution as the ones observed in the sandpile

Until then, the studies of fractal structures were related t&*PErments. . . .
equilibrium systems where this kind of distribution appears_ “\though SOC has not been observed in sandpile experi-
ments, it is well known that power-law distributions do exist

nl ial parameter val in which h ransition X
only at special parameter values ch a phase tra Stom nature, one of the most well known cases being

fcakes place. In that pioneering w_ork, the cqncept of SOC Wa%utenberg-Richter law for earthquakgkl] in agreement
illustrated by a model for sandpiles and since then an enolz.th SOC. It is clear that there is a missing piece in this

mous amount of research on SOC, both theoretically anf};;;je That is, would there be simple models that would

experimentally, has been done. Among other phenomena iispjay the observations in real sandpiles, and still present
which SOC has been connected with are earthqueemnd  SOC in other parameter regions? To our knowledge, such

evolution[3]. _ _ _ _ models are still missing in the literature and it is the aim of
The existence of SOC in an experiment with a quasi-onethjs paper to introduce them.
dimensional pile of rice was demonstrated by Freitel. The key ingredient in our models is a nonlinear friction

[4]. They found that the occurrence of SOC depends on théorce. Such kind of force has been observed in experiments
shape of the rice. Only with sufficient elongated grains, avaef sliding rocks[12] and suggested to be present in granular
lanches with a power-law distribution occurred. For moreflows [13]. The nonlinear friction force will generate a rich
symmetric grains a stretched exponential distribution waslynamics and destroy SOC via chaotic behavior as the pa-
seen. Christensegt al. [5] introduced a model for the elon- rameters are changed.
gated rice pile experiment in which the local critical slope Our models are inspired by the model introduced in Ref.
varies randomly between 1 and 2. They found that theit6], and are also governed by a coupled map lattibet is,
model, known as the Oslo rice pile model, reproduced welfhe systems characterized by discrete time and continuous
the experimental results on the quasi-one-dimensional ricéalues for the space variabjesiere we increase the dimen-
pile. In a recent publicatiof6], we introduced a fully deter- Sionality and change the drive and the relaxation rules. Hav-
ministic one-dimensional SOC system, which presents théd in mind the sandpiles experiments we first introduce a
same qualitative and quantitative behavior of the Oslo sysmodel for the local dropping of sand. We assume a two-
tem. In other words, they belong to the same universalitgimensional square lattice of linear sizend to each sitg j
class. in the lattice there is associated to it a variakje with x
When one goes to sandpiles with geometry of two dimen-€ [0,+), which is to represent the local slope of the pile.
sions a different picture emerges. That is, the mo(ﬂ@]s The dynamics of the model is described by the following
predict the presence of power-law distributions and the exalgorithm.
periments do not display them. The most well known sand- (1) Start the system by assigning random initial values for
pile experiments can be classified into two typ&s:local ~ the variablesx; ;, so that they are below a chosen, fixed,
dropping of sand in the center of the pjl& and(b) uniform  thresholdxy, .
driving, more specifically the rotating drum experiments (2) Choose a nearly central site of the lattice and update
[8,9]. In type (a) it was found that small systems presentits slope according ta; ;= Xy, .
scaling almost consistent with SOC, but in large systems (3) Check the slope in each element. If an elemenhas
another regime with big avalanches belonging to a differen; =X, updatex; ; according tox; ;= ¢(x; j—X), where
distribution appears. In typé) one sees small avalanches ¢ is a given nonlinear function that has two paramegesad
d. Increase the slope in all its nearest neighboring elements
according tox,,=Xnn+Ax/4, whereAx=x; ;—x{; andnn
*Electronic address: mariav_us@yahoo.com denotes nearest neighbors.
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FIG. 1. (a) P(s,L) for the model of local dropping of sand féa) variablea with d=0.1, and(b) variabled anda=1.5 withL=64. In
(c) we varyL and usea=1.5 andd=0.1, and in(d) we show the fitting using the scaling of E@) for small systems, wittB=6 andv
=3. We have used % 10° avalanches in all the simulations of this paper.

(4 If x| ;<x, for all the elements, go to stef2) (the  we show the distribution of evenf(s) involving s update
event, or avalanche has finishe@therwise, go to stef8)  steps, that is, the size of the avalanche. The events that in-
(the event is still evolving volve all the elements of the system have been excluded

~ Without losing generality, we can take,=1. In our  fom our analysis. However, in this model of local dropping
simulation in step(2) we have chosen the site wilh=] ¢ sand we have observed that nothing very distinct will
=L/2. The nonlinear function we use is occur if they are also included in the statistics. () we
1-d—ax if x<(1—d)/a showP(s) for L=64, d=_0.1, and varya an_d in(b), we use
d(X)= (1) a=1.5 and varyd, keepingL =64. We notice the existence
0 of the two regimes. For small power-law distributions, that
is SOC, appear only whem<1, whereas ifl is large, we see

otherwise.

The parameted would be associated with the minimum drop . .
in energy after an event involving one single eleméntd SO_C even witha>1. If d is sm_all anda_>1 we observe a
also represents a Coulomb-type discontinudypda would ~ '€9ime of almost SOC behavior, as in real sandpiles
be the parameter associated with the amount of dynamic friccharacterized by a region with an apparent scaling for small
tion between the grains. That is, the smaller ahéhe larger eve'nts, and blg events belqnglqg to a.dlffergnt d|st'r|but|on.
the friction and the smaller the change in the slope of thel© illustrate this, we show in Fig.(&) simulations witha
pile. We have tested several other similar functions and=1.5 andd=0.1 and varyind-. In small system$(s) can
found that the quantitative and qualitative results we showbe fit to a scaling form of the type
here are robust. In contrast with the one-dimensional case
[6], it is not required here thab(x) be periodic in order to
find the presence of SOC. P(s,L)=L"#G(s/L"), (2
We have chosen to evolve the system using parallel dy-
namics with open boundary conditions. It is beyond the
scope of the present paper to study the several possible varias shown in Fig. ), where we have use@=6 and
tions of our models. Further results on these models will bev=3. The functionG is not well fit by a power law, since
presented in a future publicatidii4]. The distribution of one can clearly see in the figure that it is curved. We have
time duration of the avalanches will also be presented in théound[14] that it is consistent with a stretched exponential,
future, but our preliminary results show that they are quali-as in real sandpilgs5]. The observations of Himalayan ava-
tatively similar to the ones for the size distribution. lanches[10] also display the kind of distribution shown in
We display an example of our simulations in Fig. 1, whereFig. 1(c) for large systems.
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FIG. 2. (a) P(s,L) for the model of uniform drive fofa) variablea with d=0.1, and(b) variabled anda=1.5 withL=64. In (c) we
vary the system size and uae-1.5 andd=0.1. In(d) we usea=3 andd=0.1 with varyingL. The peaks in the distribution are the events
involving all the elements of the system.

The second model we introduce here is for the rotating

10-‘1 drum experimen(S,Q],_ which we cgll uniform drive sincg

102 the slope of the pile increases uniformly for all the grains.

10° The algorithm is similar to the one described above, with the
10t exception of stef2), which is now replaced by the follow-

- 5 Ing.

& :g-e | (2) Find the element in the lattice that has the largest
107 denoted here by,,ax- Then update all the lattice elements
108 according tox; j—X; ; + Xtn— Xmax-
10°? That is, this model has a dynamics analogous to the OFC
10710 model, except for the relaxation rule, which in our case is a

piecewise linear function. We show examplesRffs) for
this model in Fig. 2. There, ifa) we fix d and varya, and in
s (b) we fix a and varyd. In both cases we have uskd-64
W ] and the events that involve all the elements of the system
108 L R J have been excluded. Distinctly from the model of local drop-
- \*§ ] ping, it seems here that there is a power-law distribution for

- 10* | s o any parameter value. However, the behavior is not exactly

) 102 [ ) i SOC. We have found that SOC is only seem#1 ord is

"5‘ . .

2 A large enough, as in the case of the local dropping. Wénen

1+ . >1 andd is smaller than a given value, we see a SOC-like
3 k% J . .
w02l 2203, de0.1 ] behay!or only for_ small values .dI. As L grows, there is a
] ' t ] transition to a different behavior, in which the larger the
-4 L ul N N .l T EPLEN _ H H H
10 07 105 e 0r 10 10 1o y system, the smaller the power-law region is, as Fig) 2

shows.
System-wide avalanches have been reported in the rotat-
FIG. 3. (8 P(s,L) showing the SOC behavior of our two mod- ing drum experimenf8,9], which belong to a different dis-
els whenas<1. The case of the uniform drive is shown when tribution than the one of the small avalanches. This is exactly
=1, which corresponds to the OFC modd) P(s,L) for a=0.3  what we see in this model fa>1 and smalld. In Fig. 2d)
andd=0.1 with varyingL using the scaling of E¢(2). we show all the events of the system including the ones that

siL¥
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involve all the elementgfor a=3, d=0.1, and varyind.). 1

—
We see that the scaling region does not get bigger as the ~ 10° ge0.0t {d, random)

d=0.01 (ud, random) —------ 7

system size increases, and a peak related to the events ir ~ 10% d=1 (Id) -
volving all the elements is seen. We have found that the — 10° | e d=1(ud - OFC) e i
intermediate size events (#3=<100) can be fit by a scaling ~ 1000 TS .
of the typeP(s,L)=L PG(s/L") with B=1 andv=0. As a"j 10': - . 4

10° b ]

in the rotating drum experimef®,15] the functionG in this S
case is closer to a power law than in the case of the experi- 10

ment with local dropping of sand. 10:: - .
In Fig. 3@ we show the SOC regime observed when 0T Al

<1, for both the local dropping and uniform drive models. 10 A '1'0 — 1'(')2 — 163 — 1'(')4 — 10°

We see that for givera and d the slope of the power-law s

distribution seems to be the same for both models, that is, the

local dropping of sand and uniform drive, but the slope var- B linear only (L=64)

ies slightly with a, as seen also in Figs. 1 and 2. Conse- 10.2 * x Jnoniinear (L=64; x ]

quently, the universality class of these models vary with the %, %*’“"‘w finear only §t:}g§ X

parameters. In Fig.(B) we show the scaling given by E(@) 18_4 i "‘*mm 1

with 8=3.55 andv=2.70 for the local droppingLD) and -y 105 b o :

B=3.55 v=2.85 for the uniform drive(UD). Our second 5 108 L b) **;;+ |

model is a generalized version of two well known SOC mod- .7 | ( L ¥

els: the earthquake model of Olami, Feder, and Christenser 108 k ac1 5 d=0.01 o 1

(OFQ) [2], which is recovered whea=0 or d=1 and the 10° L ' w ot » ]

sandpile model introduced by BTW], which is recovered oo b wq%x P,

if a=0, d=4, andx is transformed into an integer variable. 1 10 10? 10° 104 10°

In fact, our second model in this limit givéy(s)~s 1?5 as s

those two ones. FIG. 4. (@) P(s,L) for the cases in which after relaxation the

We next investigate what would happen if the relaxationyariaplex is assigned a random number uniformly distributed be-
function is just a random number generator. In other wordsyyeen 0 and 0.99 for local dropping and for uniform drive. We also
instead of usingp in step 3 of the above algorithm we now show the cases in whichis relaxed to 0 after an event, which is the
usexi"j =p, wherep is a random number uniformly distrib- same as having=1. In (b) we show the distribution of events for
uted in the interva] 0, 1—d]. We have found SOC for any a=1.5,d=0.01, withL=16 andL =64 for the events that attain
de (0, 1] with the same exponents as the BTW model. Thisonly the linear regime of the friction force, and for the ones that do
is displayed in Fig. éa) where we show the size distribution not.
for d=0.01 in the cases of LD and UD. Therefore, nonlin-
earities in¢ and consequently nonergodicity are necessan,>1 and smaltl) and what marks the boundary between the
for the SOC behavior to be destroyed in these models. In thafy, regimes of the distribution? We verified that when
figure, we also show the case in whiefy=0, which corre- ¢ the distribution of avalanches can be decomposed into
sponds ted=1. In this limit we recover the OF€2] model 5 components: one for the events that do not probe the
for the case of uniform drive. , _nonlinear regimdthat is, the flat part of the friction force

The reason whya=1 determines a SPeC'a' boundary, in iven by Eq.(2)] and another for the events that do. It turns
which SOC may or may not be present, is due to the fact th ut that the events that do not probe the nonlinear regime are

it marks the boundary in which strong .|nst§1b|llt|es exist. Inthe ones in the scaling regime of almost SOC, whereas the
fact, whena>1 one sees the exponential divergence of tra'events that probe the nonlinear regime belong to a different
jectories, the hallmark of chaotic behavid6], which start b 9 9

with almost the same initial conditions. That is, if we con-?'.it”tt.)uuo?' To |Itlus£';]ra:e this, \INe. s?r?wllm F|g(b').the dls(; th
sider two copies of one of our models, copy 1 and copy 2. ribution ot events that are only In the finear regime and the

with all the elements having the samexcept that in copy 1 ©Ones that are not for the case @#0.01 anda=1.5, with
the elemenit. =x*, whereas in copy 22, =x*+A. It is L=16 andL=64. Therefore, the existence of nonlinearities
i =X i '

not difficult to find that after one iteration by, the separa- in the friction force generates the distinct kind of distribution
tion of the two elements instead @ will be aA. So, if We observe, which is also displayed by real sandpiles. For
a>1 the separation increases, whereaa<f1 the separa- the case in whicld is not so small, similar results are ob-
tion decreases. In our models the transition from SOC to nof€rved, but it seems that in this case a third regime appears,
SOC is continuous i and discontinuous ia. which is currently under investigation. Studies of the rela-

The next natural questions are: what causes the appedfonship between our models and analytical studies, such as
ance of another regime when the system size increees mean field approacfiL7] are currently in progress.
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