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Breakdown of self-organized criticality in sandpiles
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~Received 3 July 2002; published 20 November 2002!

We introduce two sandpile models which show the same behavior of real sandpiles, that is, an almost
self-organized critical behavior for small systems and a dominance of large avalanches as the system size
increases. The systems become fully self-organized critical, with the critical exponents of the Bak, Tank, and
Wiesenfeld model@P. Bak, C. Tang, and K. Wiesenfeld, Phys. Rev. Lett.59, 381 ~1987!# as the system
parameters are changed, showing that they can make a bridge between the well known theoretical and numeri-
cal results and what is observed in real experiments.
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The concept of self-organized criticality~SOC! was intro-
duced by Bak, Tang, and Wiesenfeld~BTW! in 1987 to de-
note a phenomenon in which out of equilibrium, multidime
sional systems drive themselves to a critical st
characterized by a power-law distribution of event sizes@1#.
Until then, the studies of fractal structures were related
equilibrium systems where this kind of distribution appe
only at special parameter values in which a phase trans
takes place. In that pioneering work, the concept of SOC
illustrated by a model for sandpiles and since then an e
mous amount of research on SOC, both theoretically
experimentally, has been done. Among other phenomen
which SOC has been connected with are earthquakes@2# and
evolution @3#.

The existence of SOC in an experiment with a quasi-o
dimensional pile of rice was demonstrated by Fretteet al.
@4#. They found that the occurrence of SOC depends on
shape of the rice. Only with sufficient elongated grains, a
lanches with a power-law distribution occurred. For mo
symmetric grains a stretched exponential distribution w
seen. Christensenet al. @5# introduced a model for the elon
gated rice pile experiment in which the local critical slo
varies randomly between 1 and 2. They found that th
model, known as the Oslo rice pile model, reproduced w
the experimental results on the quasi-one-dimensional
pile. In a recent publication@6#, we introduced a fully deter-
ministic one-dimensional SOC system, which presents
same qualitative and quantitative behavior of the Oslo s
tem. In other words, they belong to the same universa
class.

When one goes to sandpiles with geometry of two dim
sions a different picture emerges. That is, the models@1#
predict the presence of power-law distributions and the
periments do not display them. The most well known sa
pile experiments can be classified into two types:~a! local
dropping of sand in the center of the pile@7# and~b! uniform
driving, more specifically the rotating drum experimen
@8,9#. In type ~a! it was found that small systems prese
scaling almost consistent with SOC, but in large syste
another regime with big avalanches belonging to a differ
distribution appears. In type~b! one sees small avalanche
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that seem to display a power-law distribution of limited siz
These small avalanches are interwoven with big system-w
avalanches which belong to a different distribution. There
studies of avalanches in natural settings@10#, which also
show similar distribution as the ones observed in the sand
experiments.

Although SOC has not been observed in sandpile exp
ments, it is well known that power-law distributions do ex
in nature, one of the most well known cases bei
Gutenberg-Richter law for earthquakes@11# in agreement
with SOC. It is clear that there is a missing piece in th
puzzle. That is, would there be simple models that wo
display the observations in real sandpiles, and still pres
SOC in other parameter regions? To our knowledge, s
models are still missing in the literature and it is the aim
this paper to introduce them.

The key ingredient in our models is a nonlinear frictio
force. Such kind of force has been observed in experime
of sliding rocks@12# and suggested to be present in granu
flows @13#. The nonlinear friction force will generate a ric
dynamics and destroy SOC via chaotic behavior as the
rameters are changed.

Our models are inspired by the model introduced in R
@6#, and are also governed by a coupled map lattice~that is,
the systems characterized by discrete time and continu
values for the space variables!. Here we increase the dimen
sionality and change the drive and the relaxation rules. H
ing in mind the sandpiles experiments we first introduce
model for the local dropping of sand. We assume a tw
dimensional square lattice of linear sizeL and to each sitei , j
in the lattice there is associated to it a variablexi , j with x
P@0,1`), which is to represent the local slope of the pi
The dynamics of the model is described by the followi
algorithm.

~1! Start the system by assigning random initial values
the variablesxi , j , so that they are below a chosen, fixe
thresholdxth .

~2! Choose a nearly central site of the lattice and upd
its slope according toxi , j5xth .

~3! Check the slope in each element. If an elementi , j has
xi , j>xth , updatexi , j according toxi , j8 5f(xi , j2xth), where
f is a given nonlinear function that has two parametersa and
d. Increase the slope in all its nearest neighboring eleme
according toxnn8 5xnn1Dx/4, whereDx5xi , j2xi , j8 and nn
denotes nearest neighbors.
©2002 The American Physical Society06-1
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FIG. 1. ~a! P(s,L) for the model of local dropping of sand for~a! variablea with d50.1, and~b! variabled anda51.5 with L564. In
~c! we varyL and usea51.5 andd50.1, and in~d! we show the fitting using the scaling of Eq.~2! for small systems, withb56 andn
53. We have used 43106 avalanches in all the simulations of this paper.
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~4! If xi , j8 ,xth for all the elements, go to step~2! ~the
event, or avalanche has finished!. Otherwise, go to step~3!
~the event is still evolving!.

Without losing generality, we can takexth51. In our
simulation in step~2! we have chosen the site withi 5 j
5L/2. The nonlinear function we use is

f~x!5H 12d2ax if x,~12d!/a

0 otherwise.
~1!

The parameterd would be associated with the minimum dro
in energy after an event involving one single element~and
also represents a Coulomb-type discontinuity! and a would
be the parameter associated with the amount of dynamic
tion between the grains. That is, the smaller thea, the larger
the friction and the smaller the change in the slope of
pile. We have tested several other similar functions a
found that the quantitative and qualitative results we sh
here are robust. In contrast with the one-dimensional c
@6#, it is not required here thatf(x) be periodic in order to
find the presence of SOC.

We have chosen to evolve the system using parallel
namics with open boundary conditions. It is beyond t
scope of the present paper to study the several possible v
tions of our models. Further results on these models will
presented in a future publication@14#. The distribution of
time duration of the avalanches will also be presented in
future, but our preliminary results show that they are qu
tatively similar to the ones for the size distribution.

We display an example of our simulations in Fig. 1, whe
05130
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we show the distribution of eventsP(s) involving s update
steps, that is, the size of the avalanche. The events tha
volve all the elements of the system have been exclu
from our analysis. However, in this model of local droppin
of sand we have observed that nothing very distinct w
occur if they are also included in the statistics. In~a! we
showP(s) for L564, d50.1, and varya and in~b!, we use
a51.5 and varyd, keepingL564. We notice the existenc
of the two regimes. For smalld, power-law distributions, tha
is SOC, appear only whena<1, whereas ifd is large, we see
SOC even witha.1. If d is small anda.1 we observe a
regime of almost SOC behavior, as in real sandpiles@7#,
characterized by a region with an apparent scaling for sm
events, and big events belonging to a different distributi
To illustrate this, we show in Fig. 1~c! simulations witha
51.5 andd50.1 and varyingL. In small systemsP(s) can
be fit to a scaling form of the type

P~s,L !5L2bG~s/Ln!, ~2!

as shown in Fig. 1~d!, where we have usedb56 and
n53. The functionG is not well fit by a power law, since
one can clearly see in the figure that it is curved. We ha
found @14# that it is consistent with a stretched exponenti
as in real sandpiles@15#. The observations of Himalayan ava
lanches@10# also display the kind of distribution shown i
Fig. 1~c! for large systems.
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FIG. 2. ~a! P(s,L) for the model of uniform drive for~a! variablea with d50.1, and~b! variabled anda51.5 with L564. In ~c! we
vary the system size and usea51.5 andd50.1. In ~d! we usea53 andd50.1 with varyingL. The peaks in the distribution are the even
involving all the elements of the system.
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FIG. 3. ~a! P(s,L) showing the SOC behavior of our two mod
els whena<1. The case of the uniform drive is shown whend
51, which corresponds to the OFC model.~b! P(s,L) for a50.3
andd50.1 with varyingL using the scaling of Eq.~2!.
05130
The second model we introduce here is for the rotat
drum experiment@8,9#, which we call uniform drive since
the slope of the pile increases uniformly for all the grain
The algorithm is similar to the one described above, with
exception of step~2!, which is now replaced by the follow
ing.

~2! Find the element in the lattice that has the largesx,
denoted here byxmax. Then update all the lattice elemen
according toxi , j°xi , j1xth2xmax.

That is, this model has a dynamics analogous to the O
model, except for the relaxation rule, which in our case i
piecewise linear function. We show examples ofP(s) for
this model in Fig. 2. There, in~a! we fix d and varya, and in
~b! we fix a and varyd. In both cases we have usedL564
and the events that involve all the elements of the sys
have been excluded. Distinctly from the model of local dro
ping, it seems here that there is a power-law distribution
any parameter value. However, the behavior is not exa
SOC. We have found that SOC is only seen ifa<1 or d is
large enough, as in the case of the local dropping. Whea
.1 andd is smaller than a given value, we see a SOC-l
behavior only for small values ofL. As L grows, there is a
transition to a different behavior, in which the larger th
system, the smaller the power-law region is, as Fig. 2~c!
shows.

System-wide avalanches have been reported in the ro
ing drum experiment@8,9#, which belong to a different dis-
tribution than the one of the small avalanches. This is exa
what we see in this model fora.1 and smalld. In Fig. 2~d!
we show all the events of the system including the ones
6-3
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MARIA de SOUSA VIEIRA PHYSICAL REVIEW E66, 051306 ~2002!
involve all the elements~for a53, d50.1, and varyingL).
We see that the scaling region does not get bigger as
system size increases, and a peak related to the even
volving all the elements is seen. We have found that
intermediate size events (10&s&100) can be fit by a scaling
of the typeP(s,L)5L2bG(s/Ln) with b51 andn50. As
in the rotating drum experiment@9,15# the functionG in this
case is closer to a power law than in the case of the exp
ment with local dropping of sand.

In Fig. 3~a! we show the SOC regime observed whena
<1, for both the local dropping and uniform drive mode
We see that for givena and d the slope of the power-law
distribution seems to be the same for both models, that is
local dropping of sand and uniform drive, but the slope v
ies slightly with a, as seen also in Figs. 1 and 2. Cons
quently, the universality class of these models vary with
parameters. In Fig. 3~b! we show the scaling given by Eq.~2!
with b53.55 andn52.70 for the local dropping~LD! and
b53.55 n52.85 for the uniform drive~UD!. Our second
model is a generalized version of two well known SOC mo
els: the earthquake model of Olami, Feder, and Christen
~OFC! @2#, which is recovered whena50 or d51 and the
sandpile model introduced by BTW@1#, which is recovered
if a50, d54, andx is transformed into an integer variabl
In fact, our second model in this limit givesP(s);s21.25, as
those two ones.

We next investigate what would happen if the relaxat
function is just a random number generator. In other wor
instead of usingf in step 3 of the above algorithm we no
usexi , j8 5r, wherer is a random number uniformly distrib
uted in the interval@0, 12d#. We have found SOC for any
dP(0, 1# with the same exponents as the BTW model. T
is displayed in Fig. 4~a! where we show the size distributio
for d50.01 in the cases of LD and UD. Therefore, nonli
earities inf and consequently nonergodicity are necess
for the SOC behavior to be destroyed in these models. In
figure, we also show the case in whichxi , j8 50, which corre-
sponds tod51. In this limit we recover the OFC@2# model
for the case of uniform drive.

The reason whya51 determines a special boundary,
which SOC may or may not be present, is due to the fact
it marks the boundary in which strong instabilities exist.
fact, whena.1 one sees the exponential divergence of t
jectories, the hallmark of chaotic behavior@16#, which start
with almost the same initial conditions. That is, if we co
sider two copies of one of our models, copy 1 and copy
with all the elements having the samex except that in copy 1
the elementxi , j

1 5x* , whereas in copy 2xi , j
2 5x* 1D. It is

not difficult to find that after one iteration byf, the separa-
tion of the two elements instead ofD will be aD. So, if
a.1 the separation increases, whereas ifa,1 the separa-
tion decreases. In our models the transition from SOC to
SOC is continuous ind and discontinuous ina.

The next natural questions are: what causes the app
ance of another regime when the system size increases~for
05130
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a.1 and smalld) and what marks the boundary between t
two regimes of the distribution? We verified that whend
→0 the distribution of avalanches can be decomposed
two components: one for the events that do not probe
nonlinear regime@that is, the flat part of the friction force
given by Eq.~2!# and another for the events that do. It tur
out that the events that do not probe the nonlinear regime
the ones in the scaling regime of almost SOC, whereas
events that probe the nonlinear regime belong to a differ
distribution. To illustrate this, we show in Fig. 4~b! the dis-
tribution of events that are only in the linear regime and
ones that are not for the case ofd50.01 anda51.5, with
L516 andL564. Therefore, the existence of nonlineariti
in the friction force generates the distinct kind of distributio
we observe, which is also displayed by real sandpiles.
the case in whichd is not so small, similar results are ob
served, but it seems that in this case a third regime appe
which is currently under investigation. Studies of the re
tionship between our models and analytical studies, suc
mean field approach@17# are currently in progress.

FIG. 4. ~a! P(s,L) for the cases in which after relaxation th
variablex is assigned a random number uniformly distributed b
tween 0 and 0.99 for local dropping and for uniform drive. We a
show the cases in whichx is relaxed to 0 after an event, which is th
same as havingd51. In ~b! we show the distribution of events fo
a51.5, d50.01, with L516 andL564 for the events that attain
only the linear regime of the friction force, and for the ones that
not.
6-4
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